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Abstract  

Approximately 20% of primary energy consumed in the U.S. is attributed to HVAC use.              
Ideally, HVAC operation would be driven by actual building occupancy, but lack of reliable              
occupancy information often results in the use of conservative static schedules. This disparity is              
even more pronounced in a college campus, where the function of each space differs by building                
(classrooms, offices, libraries) and the class schedules change frequently -- every semester, day             
of week, and hour. While several research papers propose the use of counts of the Wi-Fi                
connections (e.g., phones, computers) as a proxy for occupancy, few real-world implementations            
exist. This paper describes the development and deployment of an open-source           
Wi-Fi-to-Occupancy software library in 65 buildings of a college campus, and the planned             
integration with the building energy management and control system at the building scale. Over              
a year of Wi-Fi data was gathered into distinct academic periods, including fall and spring               
semester, academic breaks, and summer sessions. Patterns such as students moving between            
classrooms, closing laptops before exams, etc., can be visualized from the data. Approximating             
occupancy from Wi-Fi data presents challenges which we address in this project -- for example,               
identifying static devices, or estimating the ratio of devices per person. Utilizing real-time             
occupancy data to inform optimal HVAC schedules and ventilation rates creates the potential to              
identify and reduce energy waste. Other potential applications include forecasting occupancy,           
and using Wi-Fi data to predict peak demands. Finally, the paper discusses how to easily scale                
these tools to other buildings. 

Introduction 

People require services from building -- lighting, computing, air conditioning, heat,           
ventilation, hot water, communication, and others; these services consume energy. When           
buildings are empty, these services are not needed and the energy use should decrease              
correspondingly. Studies have demonstrated that occupancy-derived HVAC schedules reduce         
runtime of the HVAC system by 3-37% (Trivedi 2017) and occupancy-driven HVAC systems             
have produced energy savings up to 42% (Erickson 2011). Despite the importance of knowing              
whether a building or sub-zone has people in it, energy information systems for buildings do not                
typically track occupants’ presence, or location (Price et al. 2015). Conventional occupancy            
sensors (e.g. infrared, ultrasound, or CO​2​) have been expensive to install and to connect to a                
central information system, especially in an existing building, and have often had questionable             
reliability. Recently, cameras have shown a high accuracy when used for occupancy detection             
(Petersen, 2016), however they are costly, may trigger privacy concerns (Wang, 2019; Chen,             
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2018, Zou, 2017), and require significant computational resources, especially when the data are             
anonymized.  

Wi-Fi network data have been proposed as a means of estimating occupancy in buildings              
(Pritoni, 2017), however, most of the previous research on occupancy detection focused on             
algorithms (Wang 2019; Zou, 2018, Shen et al., 2017) or advanced control applications (Wang              
2019, Erickson 2011). The use of advanced algorithms to predict occupancy from Wi-Fi both              
increases the difficulty of implementation and requires training; an academic schedule with short             
periods of distinct behavior patterns adds further complications (Wang 2019, Shen et al., 2017).              
A few methods address the issue of changing patterns through continuous integration of new data               
into the model to capture recent trends (Zou 2018, Trivedi 2017), but they do not address the                 
nature of distinct periods and events. Other research correlates Wi-Fi data to occupancy (Ouf              
2017, Rashi 2015 ), but lacks discussion on the data process required to transform raw data into                 
an occupancy proxy, or the study requires personal information and Mac Addresses to map              
Wi-Fi to Occupancy (Balaji 2013, Zou 2018, Ardakanian 2018). A startup company based at the               1

University of British Columbia uses Wi-Fi data to determine occupancy and adjust HVAC             
controls accordingly; they have several pilot projects underway, but results have not been made              
publicly available. Overall, the literature lacks papers describing installations of Wi-Fi sensing at             
scale and the process of utilizing raw Wi-Fi data to create occupancy-driven applications.  

This paper describes the development and deployment of an open-source          
Wi-Fi-to-Occupancy software library in 65 buildings at Pomona College, and how this            
intelligence is integrated with the building energy management and control system. Over a year              
of Wi-Fi data were gathered into distinct academic periods, including fall and spring semester,              
academic breaks, and summer sessions. Occupancy based on Wi-Fi counts was integrated with             
the Automated Cloud-based Continuously Optimizing Building Energy Management System         
(ACCO-BEMS) , a building energy management system developed by MelRok LLC (MelRok),           2

which continuously and automatically monitors the performance of a building’s energy systems,            
and optimizes and dictates operational adjustments. By gathering information on the real-time            
occupancy of a building, energy use can be carefully matched to provide only the needed               
services while the building is being used. The California Energy Commission (CEC) sponsored             
this research to deploy ACCO-BEMS in 12 buildings (a subset of the 65) of varying activity                
types, such as classrooms, offices, a data center, the campus student center, and a              
music/performing arts center on the Pomona College campus in Claremont, California, part of             
Claremont Colleges Consortium. The project lead is the Zero Net Energy (ZNE) Alliance . 

These sections follow below: Data Collection, Processing and Analysis; Applications;          
Discussion; Conclusions and Next Steps; the paper closes with Acknowledgements and           
References. 

Data Collection, Processing and Analysis 

Data collecting 

The Pomona College campus Wi-Fi network supports the wireless connectivity needs of            
about 1,700 students, faculty, staff, and visitors. More than 1,000 Wi-Fi access points (APs)              

1 Sensible Building Science ​https://sensiblebuildingscience.com/ 
2 For more information: ​https://www.znealliance.org/acco-bems  
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report to a central Cisco Wireless Local Area Network (WLAN) controller. The Wi-Fi             
infrastructure is shared with other colleges in the consortium.  

As part of this CEC-funded project, the research team developed an open-source software             
application, called COUNT (Counting Occupants Using Network Technology) to collect          
occupancy information using the Pomona Wi-Fi network infrastructure. The architecture of this            
software is shown in Figure 1. The software is developed in Python 3 and publicly available                
under a modified BSD license. To comply with cybersecurity requirements from the campus IT              
department, this software was deployed on a Virtual Machine (VM) hosted locally on the              
campus network. This VM has the necessary permissions to communicate with the WLAN             
controller and can push data to an external data store.  

Figure 1: Architecture of the COUNT software installed in Pomona Campus. 

The software has two components: one module queries the campus Wi-Fi controller using             
the Simple Network Management Protocol (SNMP) (Stallings, 1993) and saves the collected            
data to a local database which serves as a data buffer to prevent data loss. The SNMP query is                   
used to query the list of devices connected to each access point at a given moment. This is the                   
“raw data” that is pushed to the local data buffer. Before storing it, the COUNT software ensures                 
that all personal information, such as the MAC address of the user device has been removed and                 
that the data is completely anonymized. The second module reads this data from the local buffer                
and tries to push it to the external cloud data store. Upon a successful data push, it removes data                   
from the buffer. Otherwise, the second module detects an unsuccessful data push to the database               
and it keeps the data in the buffer. The software attempts to push the data again, once the                  
network connectivity is reestablished. The decoupling of the software modules prevents loss of             
data in case of loss of network connectivity between the VM and cloud database. As the modules                 
are set up via Linux cron jobs, they terminate after execution and restart periodically.  

The system outputs the raw sum of connected devices (e.g., laptops, phones) for each              
building. While it is possible to obtain more granular data, such as the count of devices for each                  
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access point or floor, locating the exact position of a device in a building and associating it to the                   
correct HVAC zones is challenging and difficult to scale. For this reason, the research team used                
building-level occupancy information in the applications described below. Scalability challenges          
related to using more granular data is addressed in the discussion session. More than a year of                 
Wi-Fi data were gathered using this platform and were used for the analysis and applications               
below. 

Automatic data cleaning  

The raw data collected from the Wi-Fi system need to be pre-processed to provide              
reliable occupancy-proxy values, necessary to any application (e.g., schedule adjustments,          
measurement and verification, etc.). In order to create an automatic procedure to pre-process the              
data, the project team conducted extensive data exploration and identified several issues with the              
raw data, including irregular sampling frequency, null and zero values, outliers, and static             
devices that are always connected. The algorithm shown in Figure 2 was designed to address               
these issues and was implemented using a script in Python 3.  

 
Figure 2: Data pre-processing algorithm (yellow), its inputs (red) and outputs (green). 

 
The output of the algorithm is the pre-processed data that is used by other applications.               

Steps 1 through 4 are necessary to address values in the data that do not represent device count,                  
and step 5 removes devices that are not associated with people so that the data serves as a better                   
proxy for a count of occupants. 

Step 1. Address Irregular Sampling Frequency. ​The COUNT software currently          
collects data every minute for the Cisco system. However, the sampling time is not exact due to                 
delays caused by network traffic and computation time of the virtual machine which hosts the               
software. All the data queried from the central Wi-Fi controller are time-stamped only when the               
data collection process for all the access points is completed. As a result, the actual difference in                 
time between two consecutive scans is not constant. To address this issue, we resampled the data                
at consistent intervals. The data were aggregated using the maximum value of each time              
resample interval (e.g., 5 minutes) to maintain whole numbers and any period without a sample               
point is assigned a NaN (Not-A-Number) value. 

Step 2. Address Null and Zero values. NaNs are present in the data for several reasons:                
1) Data missing for an entire building (e.g., during the transition between the previous Aruba               
Wi-Fi system to the current Cisco system); 2) COUNT system offline; 3) Access points              
disconnected from power or Wi-Fi network; 4) Access points working correctly, but no clients              
connected to them; and 5) NaN values generated during the resampling step.​ Cases one and two                
were left as NaN values; case three is addressed in step 3. All the instances of case four were                   
converted to zero-values, and case five was set to a zero value unless the data points directly                 
preceding and following were non-zero values. In that case a linear interpolation was applied to               
the values. 
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Step 3. Identify Constant Values. Data that remains constant over a long period of time               
need to be flagged as a possible anomaly. We set the threshold at three days to account for the                   
lack of occupancy change over the weekends and the different class schedules on Fridays. All               
instances of uninterrupted constant data for a period exceeding the threshold are identified and              
the values are converted to NaNs. This process accounts for the case three identified in Step 2 of                  
the anomaly detection process. After the NaNs and zeros are sorted, the sampling rate is               
standardized and the constant values are dropped.  

Step 4. Detect and Remove Outliers. The Wi-Fi data approximates occupancy trends.            
As stated previously, on a college campus, the occupancy trends vary greatly based on the               
academic calendar. In order to identify and remove outliers, these trends need to be considered,               
since an outlier for a period with low occupancy (e.g., 100 occupants in a building during                
summer break) may not be identified if the same criteria is applied to the building during periods                 
of medium occupancy (e.g., during the academic season). Five academic periods were identified             
for Pomona College: spring term, fall term, finals week, summer session, and all breaks. Within               
the identified periods, the daily occupancy profile also varied at a daily level. Depending on the                
function of the building, the daily occupancy profile either varied according to class schedules or               
with respect to the working week schedule. Examples of the profiles are depicted in Figures 3                
and 4. Figure 3 shows the average daily device count profiles for the five academic periods in                 
Building 1, which houses offices and classrooms. Fall and Spring show the characteristic dip in               
occupancy around lunch time. 
 

 
Figure 3: Average occupancy patterns during different academic periods for the Building 1 

 
Figure 4 shows the device count daily profile for the Building 1 during the Spring               

Semester and it aggregates (1) Monday (M) and Wednesdays (W); (2) Tuesdays (T) and              
Thursdays(R); (3) Fridays (F); and (4) weekends separately, reflecting patterns in class            
schedules. Comparing the dotted blue line and the daily profiles, it is apparent that aggregating               
all weekdays creates an inaccurate occupancy daily profile both with respect to magnitude and              
timing. The impacts of this disaggregation on both HVAC energy use reduction and cost savings               
likely will be substantial. 

 12-125©2020 Summer Study on Energy Efficiency in Buildings



 
Figure 4: Average occupancy patterns during different days for the spring term for Building 1  

 
The research team designed an outlier detection method to accommodate the variability in daily              
and seasonal occupancy trends.  

Step 5. Remove static devices. At this point in the process, all identified anomalies have               
been removed but the data may still show connected devices, even when the building is               
unoccupied. We call these devices “static.” Static devices include things that are always             
connected to the Wi-Fi network such as desk phones, printers, and Internet of Things (IoT)               
devices such as plug controllers, thermostats, etc. As most of these devices are not associated               
with the presence of an occupant, their inclusion would distort the estimate of occupancy. 

A detailed exploration of the data revealed that the number of static devices is not               
constant over time. In fact, the number of static devices tends to vary based on the different time                  
periods, and does not seem to be correlated to the day of the week. For Pomona College, the                  
variability is significant, with some buildings having less than half the number of static devices               
during the summer, when compared against other periods. 

To address this variability, the research team created a model to dynamically determine             
the number of static devices per building. The model groups the data to assess each of the five                  
academic periods separately, and then filters by the hours between midnight and 4 AM. The               
frequency of the device count is used to fit a distribution. A value from this distribution (e.g., the                  
median) is then used to estimate the number of static devices in each building for each academic                 
period. Using the median value in the model, the static device count as a fraction of the peak                  
hour of occupancy ranged from 4.6% to 16.9% across the buildings in the Fall semester. The                
static device count is then subtracted from the base Wi-Fi count. Picking higher values (e.g.,               
third quartile) for static devices may under-estimate actual occupancy, but also allows for more              
aggressive control strategies. Lower values for static devices reduces the chances of            
undercounting occupants, but may lead to more conservative control actions. This approach            
allows energy managers to change this adjustment as needed. 

Over-/under-counting evaluation 

The model discussed above produces an estimated device count which does not directly             
correspond to the number of occupants. For instance, a single person may have multiple              
connected devices or may carry no connected devices. The discrepancy between device count             
and human occupancy can create scenarios of under-counting or over-counting actual occupants.            
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To understand this error we investigated the relationship between devices and occupancy count             
using carbon dioxide sensors, class schedules, and physical counting of building occupancy.  

Comparison with course schedules. ​The team collected the list of classes in Building 1,              
the weekly schedule, and the number of students enrolled in each course from Pomona College.               
From this schedule, the researchers calculated the expected number of students that would be              
present in the building at any point in the day, for each day of the week (Monday-Friday).                 
Differences between these values and the exact count include: 

● not all students who are enrolled might attend a class session 
● students or others who are not enrolled may attend a class session 
● the enrollment could change over the period of the semester and we have only a snapshot 
● students could come early for a class session or remain in the building after their class                

session has ended 
● some occupants are present in the building for reasons other than to attend a class session                

(people in offices, common spaces, etc.) 
The blue line in Figure 5a represents the total number of enrolled students that are               

expected to be in Building 1 on a Monday and the orange line represents the average number of                  
devices connected to access points in the same building across all Mondays in the period. It can                 
be seen that changes in occupancy from the two datasets coincide, although the magnitudes do               
not. The factors listed above and the range of devices per person could explain this difference in                 
magnitude. 

Comparison to ground truth counts. ​On Sept 16, 2019, LBNL visited Pomona College             
and conducted ground-truthing of the occupancy count to compare to the Wi-Fi data at Building               
1. Ground-truthing refers to directly observing the relevant data. In this case, it required the               
counting of people entering and leaving Building 1, and enabled a comparison of actual              
occupancy with the Wi-Fi data meant to indicate occupancy. At 7:30 am the team began               
monitoring the two access points on the east and west sides of the building. Researchers saw a                 
facilities worker physically unlock the building; Building 1 also has a key card lock that faculty                
and staff can use to access the building outside of working hours, so there is no certainty that the                   
building was unoccupied when the team began recording. Utilizing a google form accessed via              
phones, the LBNL team continuously recorded time-stamped entries of the number of people             
entering and exiting the building from 7:30 until approximately noon. Figure​ 5c ​shows the              
number of people in the building (“occupancy” as estimated from the visual counts) and the               
number of devices connected to the access points (“devices_adj”). The device per person ratio              
over the time where the ground-truthing occurred averages about 1.2 devices per person,             
although it is apparent in Figure ​5c ​that the number of devices vary when the number of people                  
inside the building remains constant. This variation shows the dynamic nature of the multiplier,              
and highlights the difficulty in evaluating whether a constant multiplier accurately represents the             
ratio of devices per person. Furthermore, around 11:45 am the count of devices suddenly drops               
without a corresponding change in actual occupancy. The research team speculated that this             
could be due to people closing laptops to leave the building or before an exam. 

Comparison with a Carbon Dioxide Sensor ​. ​A test was performed with one calibrated             
​CO ​2 sensor installed in a large classroom in Building 1. We used the ​CO ​2 level measurements                
from this sensor to compare its variation with the variation in number of connected devices to the                 
nearest Wi-Fi access point(s). Since the classroom is isolated and large, the assumption is that               
the only devices connected to the access points are the ones in the classroom. Figure 5b is an                  
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illustration of this comparison with the ​CO ​2 level in blue and the number of connected devices in                 
red. It is encouraging to see that the peaks and dips in ​CO​2 level and the number of connected                   
devices nearly coincide, although the relative magnitude of these peaks/dips are different. The             
correlation coefficient between the carbon dioxide levels and device count, calculated for a week              
in November of 2019, is 0.57. It should also be noted that the access point might also count                  
devices belonging to occupants who do not contribute to the ​CO ​2 levels measured by the sensor,                
for instance people who sit in nearby rooms. 

 
 

 
Figure 5.Validation of occupancy counts. a) comparison with class schedules; b) ground truthing 

by counting people; c) comparison with CO2 sensor 
 

Overall, Wi-Fi trends correlate well with other indicators of occupancy such as class schedules, 
CO ​2​ sensors, and manual counts of people. While these tests are not conclusive, they provide 
some confidence on the usefulness of the Wi-Fi approach. Furthermore, for buildings without 
sensors, Wi-Fi offers an untapped opportunity to compare occupancy profiles with scheduled 
building operation.  
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Applications 

Understanding the occupancy patterns of a building enables the application of           
building-specific HVAC schedules and ventilation rates to reduce energy waste, both for general             
trends and real-time observations. 

Occupancy-aware HVAC schedules 

Similar to other universities or campuses in our experience, Pomona facilities set their             
HVAC schedules to operate during generic weekday business hours and to turn off for weekends               
and some predetermined holidays. However, the actual schedules are not always up to date. For               
example some holidays were not programmed into the schedule and several scheduled events             
outside of the typical operation continued to be scheduled even after cancellation. Additionally,             
utilizing the same hours of operation for every building, day of the week, and season is a                 
non-optimal oversimplification. 

To address these issues, the research team created an application that utilizes the             
occupancy data to create occupancy-aware HVAC schedules and do dynamic event           
identification.  

● The occupancy-aware HVAC schedule model inputs consist of the enrollment schedule,           
building type, two weeks of Wi-Fi data, and dates of period, and then outputs the on/off                
HVAC schedule for each day of week. The resulting schedule accounts for the weekly              
class or work schedule of the occupants. 

● The dynamic event identification model inputs consist of the Wi-Fi data and expected             
occupancy profile, and produces an event classification, returning yes or no. This model             
detects and corrects discrepancies between the occupancy-informed (static) HVAC         
schedule and what is occurring in real time. For example, if a holiday occurs that is not in                  
the schedule and the real time occupancy is below the expected occupancy by a certain               
threshold, then this event is flagged ​Unoccupied ​. An example can be seen in the figure                
below where Thanksgiving break was not programmed as a holiday and the building             
operated as usual even when the campus was closed. Conversely, if there is a one-time               
meeting or study session scheduled and the real time occupancy is higher than the              
expected occupancy by a certain threshold, an event will be triggered ​Occupied​.  

The facilities department is in the process of adapting schedules based on this new information.  

 
Figure 6: Occupancy and HVAC schedule at Building 2 before (Sunday-Tuesday)  and during 

the Thanksgiving break (Wednesday-Friday) 
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Occupancy-aware Ventilation Rates 

According to ASHRAE 90.1, building ventilation should be based on both the size of the               
building and the number of occupants. However, most buildings do not have occupancy data so               
the ventilation rates are usually determined with occupancy-based design parameters, or rule of             
thumb. With the Wi-Fi based occupancy information, we are able to calculate a continuously              
varying recommended ventilation rate, as shown by the green line in Figure 7.  

To evaluate the discrepancy between the implemented ventilation rates and the           
recommended ventilation rates, the project team calculated the actual ventilation from the supply             
air rates at the variable air volume box (VAV ) level and outdoor air (OA) damper position in a                  3 4

air handle unit (AHU ) and compared these values to the code-compliant ventilation rate. Figure              5

7 shows one of the buildings that was found to be under-ventilated due to OA dampers in two                  
AHUs being closed almost all the time (until 2019-12-05). This problem was corrected after we               
reported this issue. The new behavior of the damper is illustrated in Figure 7 (after 2019-12-06)                
and the corresponding change in ventilation is shown. The correction to this problem led to an                
increase in air quality and the next steps to this work will involve implementing a dynamic                
change in damper positions with occupancy. 
 

 
Figure 7: Outdoor damper positions of several AHUs in Building 1 before and after correction 

and the continuously varying recommended and actual ventilation rates 

Improved peak demand forecast with occupancy data 

Most utilities include demand charges and time of use prices in their tariffs for              
commercial buildings. Thus, forecasting building load is useful for implementing strategies (e.g.,            
precooling) that minimize customer bills and, at the same time, minimize stress on the grid.               
There are multiple ways for forecasting peak demand (Yunsun et al., 2019; Chirag et al., 2017;                
Grant et al., 2014), with a large number of these methods making use of only power and weather                  
data. Given the availability of occupancy data, the team tested whether the forecast of peak               
demand would improve by adding this new variable to existing models. To do this, the team ran                 

3 VAV: Variable Air Volume box. A type of HVAC equipment that supply air to each zone. 
4 OA damper: a damper that controls access of outdoor air to the building and is located in the Air-Handler 
5 AHU: Air Handling Unit. A type of HVAC equipment that distributes air through ductwork. 
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a linear regression model with about five months of data (spanning two semesters and summer               6

break) to forecast peak demand for the next 24 hours on a building in Pomona College. First, the                  
model was run with just one independent variable - weather and other time-dependent variables              
such as time-of-day and day-of-week. Then, Wi-Fi occupancy was added as another independent             
variable to see if there were any improvements.Data was sampled at 15 min intervals. Occupancy               
and weather prediction data for the next 24 hours were assumed to be correct, and these were                 
used to forecast the power through the two models. 

 
Figure 8: Actual (blue line) power consumption vs forecasted (orange line) power consumption 

(W) without and with occupancy data in Pomona’s student center. 
 

Figure 8 shows the results on a single day (October 24, 2019) of this test. As 
demonstrated by the figure, occupancy data allows the model to better fit the peaks and troughs. 
Several other models such as random forest and artificial neural networks were run on this 
dataset as well. In both cases, occupancy data increased R2 values by around 0.05, thereby 
showing that occupancy data plays a significant role in improving the load profile forecast and 
that it can be used for improving current state-of-the-art models.Once peak demand can be 
reliably forecasted, strategies can be developed and compared to minimize energy cost, as well 
as relieve stress on the grid. 

Discussion 

Evaluation of Energy Savings 

Isolating the savings attributed to Wi-Fi occupancy detection as part of the ACCO-BEMS             
platform is outside the scope of this paper, however the research team is in the process of                 
estimating the energy impact of adapting occupancy schedules and airflow rates, for at least one               
Pomona building. Due to the closure of campus for the COVID-19 pandemic, the above              
applications have not been implemented in the Spring Semester as planned and an evaluation of               
the energy savings cannot occur until campus is re-opened.  

6 Linear Regression: A method used for finding relationship between target and one or more predictors. 
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Lessons Learned  

Deployment of this technology in a large campus highlighted important challenges in            
scaling up this approach to new buildings.  

The Pomona IT department voiced legitimate ​cybersecurity and privacy concerns ​at           
the outset of the project. The research-grade software developed at LBNL did not initially meet               
the requirements set by the IT department for deploying software on the IT network. In order to                 
reduce cybersecurity risks, during the initial design and implementation process, the LBNL            
software was embedded in a virtual machine hosted by Pomona IT, but managed by MelRok.               
Wi-Fi data were pushed to the MelRok cloud store and accessed via the MelRok platform, which                
had already been authorized by the IT staff. Due to this multi-stakeholder organizational             
structure, any changes and updates to the COUNT software required all three institutions to be               
involved and this led to a slow development cycle. While these initial delays did not impact the                 
overall schedule of the project, new installations should expect similar tight cybersecurity            
requirements and the project plan should include adequate time for collaborating and            
coordinating with the local IT group, especially in systems managed by large organizations. 

Throughout the project many activities required significant ​coordination and         
cooperation among people at different institutions. The installation, configuration, and upgrades           
of the occupancy detection software needed active collaboration among LBNL, MelRok, and            
Pomona IT. LBNL revised the software package and its configuration due to changes in the               
Wi-Fi infrastructure ( from Aruba and Cisco in the middle of the project); additional              
functionalities were added to the software (e.g., ability to track single devices anonymously); and              
there were upgrades to the ACCO-BEMS system and underlying control infrastructure. MelRok            
developed new features to integrate the new occupancy inputs with the other control and              
monitoring systems. Pomona IT managed the new software and made sure it did not negatively               
impact the operation of the network (e.g., cause network traffic congestion). During the             
integration of the occupancy data into the active management of the buildings, the Facilities and               
Campus Services Department made sure changes to the HVAC operation would preserve            
occupant comfort and safety in addition to generating savings. No progress would have been              
possible without the collaboration of all these partners. Developing a system that streamlines             
coordination is key to scaling up this solution beyond a research and development project. At the                
same time, the organization sponsoring the development of such a system should make sure all               
the parties have the right incentive to cooperate. 

Aside from organizational challenges, ​integrating a new source of data with existing            
building automation systems is a significant enterprise, given the uniqueness of each            
installation. For instance, to compare actual ventilation with code-compliant rates, as described            
in our second application, one has to map VAV boxes to the AHU(s) connected to it. The VAV                  
box sensors are used to estimate the amount of air that gets to each zone, while sensors in the                   
AHU are utilized to calculate what fraction of that air is “fresh.” This mapping does not currently                 
exist for all buildings and some of the outdoor air dampers do not report correct data. As a result,                   
to enable this application on all the buildings some physical inspection and software updates may               
have to be performed on different buildings. A similar issue occurs when mapping APs to VAV                
boxes; this process requires maps including the location of both types of equipment.             
Additionally, the range of each AP is not a set zone but depends on the strength of the signal and                    
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other factors including how many devices are connected. Therefore, even with an accurate map              
of the equipment, there is not a definite relation between the AP that a device connects to and the                   
zone that the corresponding person occupies. As a result of this ambiguity, and other factors               
involving the tradeoff of granularity and complexity, we performed the occupancy analysis at the              
building level. Future work will include increasing the granularity to the floor or zone level. 

Conclusion 

This paper describes the development and deployment of an open-source software library            
to estimate occupancy using Wi-Fi data. The software collects data from tens of buildings in               
Pomona College campus in Southern California. The library is integrated with the native             
building automation systems as part of a CEC-funded project in collaboration with MelRok and              
Pomona College. Over a year of Wi-Fi data was gathered into distinct academic periods,              
including fall and spring semester, academic breaks, summer sessions. The paper illustrates the             
data collection system and the automatic data cleaning process, and describes some qualitative             
tests to understand the potential for over- and under-counting people. Three applications are also              
highlighted. Two utilize real-time occupancy data to inform optimal HVAC schedules and            
ventilation rates to identify and reduce energy waste. A third one shows how predicting peak               
demand can improve by using occupancy data. Finally, the paper discusses lessons learned from              
the project. While significant progress has been made by the research community in             
demonstrating the potential of Wi-Fi-based occupancy detection, further work needs to be done             
to facilitate its deployment in the field. First, guidelines and tools to ensure cybersecurity and               
data privacy needs to be developed, to reduce risk and facilitate discussion between IT and the                
facilities departments. Second, additional field work should demonstrate the energy savings           
potential of this new sensing technology at scale. Third, the integration of Wi-Fi occupancy              
sensing with Energy Management and Information Systems (EMIS) should be simplified and            
clearly documented. For instance researchers should streamline the process to integrate Wi-Fi            
occupancy sensors with a building automation system using BACnet, with new Fault Detection             
and Diagnostic (FDD) tools, and with emerging advanced supervisory control software. 
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